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Abstract—The equilibrium equations for free vibration of composite laminated conical shells includ-
ing the transverse shear deformation and the extension-bending coupling are formulated in terms
of the five displacements using a particularly convenient coordinate system. The solutions for these
five displacements are obtained, in the form of a power series, from the five governing equations,
and the convergence condition for the solutions is also determined. Illustrative examples are
presented to investigate the effect of the transverse shear deformation on the frequency parameters
of axisymmetric vibration of isotropic and cross-plied laminated cones with different geometric and
material parameters and under various types of boundary conditions.

1. INTRODUCTION

The free vibration of isotropic conical shells has been studied by many researchers using
the Rayleigh-Ritz technique (Saunders et al., 1960; Garnet and Kemper, 1964), the
numerical integration method (Goldberg et al., 1960 ; Kalnins, 1964 ; Irie et al., 1982, 1984),
the finite element method (Sen and Gould, 1974) and the analytical solution approach
{Dreher and Leissa, 1970). In addition to the work done for free vibration of isotropic cones,
there have been a few studies for free vibration of orthotropic conical shells (Cohen,
1965; Siu and Bert, 1970; Wilkins ez al., 1970; Yang, 1974) and composite laminated
(Chandrasekaran and Ramamurti, 1982 ; Sankaranarayanan et al., 1987, 1988 ; Tong and
Wang, 1988; Tong, 1993). Tong (1993) obtained a simple and exact solution for the
Donnell-type governing equations of free vibration of composite laminated conical shells
including the extension—bending coupling terms.

In the present investigation, the solution procedure developed in Tong (1993) is utilized
to study the free vibration of composite laminated conical shells including the effect of the
transverse shear deformation, the rotatory inertia and the extension—-bending coupling. For
the classical shell theory, in which the transverse shear deformation is neglected, there are
three displacement-type equilibrium equations governing the free vibration of composite
laminated conical shells. For the improved shell theory, in which the transverse shear
deformation is included, there are five displacement-type equilibrium equations in terms of
five displacements for free vibration of composite laminated conical shells. Following the
solution procedure developed for the classical shell theory (see Tong, 1993), a simple
solution is obtained directly from the five governing equilibrium equations of displacement-
type for free vibration of composite laminated conical shells including the transverse shear
deformation, the rotatory inertia and the extension-bending coupling. Illustrative examples
are given for the axisymmetric vibration of composite laminated cones to show the effect
of the transverse shear deformation in terms of reducing the frequency parameters predicted
by the classical shell theory.

2. GOVERNING EQUATIONS

Consider a composite laminated truncated circular conical shell, and let R, and R,
indicate the radius of the cone at its small and large ends, respectively, « denotes semivertex
angle of the cone and L is the cone length along its generator. We now introduce the x—¢
coordinate system ; x is measured along the cone’s generator starting at middle length and
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¢ is the circumferential coordinate. The displacements of the shell’s middle surface are
denoted by U and V along x and ¢ directions, respectively, and by W along the normal to
the surface (outward positive). The rotations of the normal are denoted by f, and §, about
¢ and x axes, respectively. In terms of these variables the cone’s radius at any point along
its length may be expressed as:

R(x) = R,+xsina, )]

where R, is the average radius of the cone.

For free vibration of composite laminated conical shells including the transverse shear
deformation and the extension—bending coupling terms, the strain-displacement relations,
the equilibrium equations and the stress resultant-strain equations are given as follows:

Strain-displacement relations:

e—a_l]
=7 8x
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3

p= ;kgl Pr(he—he_y). C))

Stress resultant-strain relations: it is assumed that there are no stretching—shearing,
twisting-shearing, bending—shearing, and bending—twisting couplings, thus:
N, = A6+ A6+ By 1K+ Biaky
Ny=A6,+ A58, +B_121c,c + Bk,
Ny = A337xp + B3y, (5a)
M, = B &;+ B85+ D 5.+ DK,
My = B8, 4+ Bygy+ DK, +Djsicy

M,y = B3y p+ Di3skyy, (5b)
Qx = A558xz
Qs = Asstys (5¢)
where :
N
=Y 0P (h—he_y) B; = Z QP (hi—hi_,)
K=1
1M .
1] 3 ; (k)(hz—hi- 1) la] = 19 29 39 (6a)
N (he
(Ags, Ass) = Z j @9, 01 (@) dz, (6b)
and

2
ro=3]1-(f ] )

where £ is the total wall thickness of the shell.
On substituting eqns (2) into eqns (5), and further into eqns (3), we may express the

governing equations for free vibration analysis of laminated conical shells in terms of the
five displacements, namely :

L“U+L12V+Ll3W+L14ﬂx+L15ﬂ¢ = phU
Ly U+ Ly VA Ly WLy +LysBy = phV
Ly U+ L3y V+LysWH Lyupi+ Lispy = phW

h3
Ly U+LyoVA+LysW+LasBi+LasBy = pl—zﬁx

h3
LU+ LoV + LW Lyt LosBy = 22 By, ®
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The above set of governing equations degenerate to those of cylindrical shells when «
is set equal to zero. It is also worth noting that if the starting point of the x axis is changed
to the cone’s vertex, where the radius is equal to zero, the x—¢ coordinate system will
coincide with the s—¢ coordinate system used by many previous researchers.

The related boundary conditions at both ends of the cone may be expressed generally
as:

N,=0 or U=0
Ny=0 or V=0
0,=0 or W=0
M., =0 or B,=0
My,=0 or B,=0. (10)
Evidently the governing equations presented in the foregoing are complex and to our

knowledge exact solutions have not been given for these equations. In the following section
we outline a strategy for constructing general solutions for these equations.

3. SOLUTIONS

Following the solution procedure outlined in Tong (1993), let us assume solutions for
eqns (8), of the following form :

U= Y a,x"cosnpe™ V=) b,x"sinn¢e”

m=0 m=0

W=Y c,x"cosnge™

m=0
B = Zo d,Xx" cos ng €' B, = Zo e,X™ sin ng e, an

Where i = \/_—‘1 and n is an integer representing the circumferential wave number of
the conical shell, a,,, ,,, ¢, d,, and e, are constants to be determined later.

On substituting eqns (11) into eqns (8), which are modified by multiplying all the
equations with R2(x), and using eqns (1) and (9), five linear algebraic equations, developed
by matching the terms of same order in x, are obtained and further rewritten as the following
recurrence relations:
iy =Fy Gpi+ F1 280+ F 130+ F 40n_2+F 5y + F\ 6bn

+F 1Cmi 1+ Fi g6+ Fi9Cu_ 1+ Fi108mi 1 +F1118p+ Fy 128y
+Fy 1382+ F1 14€me 1+ F1 156, (12a)
b2 =Fy Qi1+ Fa 28+ Fy 30\ +Fy4by+ Fosby 1+ Fy6by_2
+Fy7Cm+Fy5Cn 1+ F298m 1+ Fy10dn+ Fa118ms 1+ Fa126m
+Fy36m_1+F; 1462, (12b)
Cmi2 = F318m i 1+ F320,+F3 30+ F3 4Cpiy + F3 56+ F3 6Cm—1

+F;9Cm -2+ Figdps 1 +F39dn+F3108m_ 1+ F3 116+ F3 12601, (120)
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Auro = Fy Qi1+ Fy20n+Fy380 - Fy4ay 2+ Fo 50y, +Fysbn
FFy1Cmi 1 +FasCm+FaoCn 1+ Forolus1 +Fo 118+ Fy 128,
+Fy138n 2+ Fi148ms1 +Fayse,, (12d)
emys = Fs 10y 1+ Fs 28, +Fs3bpy 1+ Fs by +Fs sby (+ F56bp_ 2
+Fs5 16n+ Fs53Cm 1+ Fs598ni 1+ Fs 10dn+ Fs 118mi 1 + Fs 126,

+Fs138m_ 1+ Fs14€m-2, (12€)

where the coefficients F;; ({7, /) = (1,15), (2,14), (3, 12), (4,15) and (5, 14)) are given in
the Appendix. The above recurrence relations allow us to express the unknown constants
in terms of a,, b, ¢, di, and ¢, (k = 0, 1), which are the unknowns to be determined by
imposing the boundary conditions at both ends of the cone.

Before going into details of the solution procedure, let us consider the convergence
condition of the series solutions defined in eqns (11) and the associated recurrence eqns
(12).

Careful analysis of eqns (12) and the coefficients F;; given in the Appendix shows that :
(a) the power series defined in eqns (11) are alternating series, i.e. the terms of the series
change sign consecutively ; (b) when m is large enough, eqns (12) can be written approxi-
mately as follows:

2 sin « sin® a 2 sin a sin? «
d, =0

A11<am+z+ _”R:—am+1 + —Rg‘;j“‘"am)‘l'Bn(dmz'i' Tdm+1+ *7{‘3—
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A33(bm+2+ -"“Rg'“—bm+1+ —Es“bm)+533(€m+z+ Tem+1 + ‘R—zem) =0
0 o 0 0

+ 2sina + sin? o 0
Cm+2 Cmatt 7 Cm =
R, R;

2sina sin® o 2 sin a sin? a
Bll(am+2+ b1+ wam)+Dli(dm+2+ AL —dm) =0

R, R? R, R?
B33<b,,,+2+ g—%ﬁbM 1+ Si—;-zg—a—t—bm>+D33(em+2+ 2~§};—:—azem+ 1+ %em) = Q. (13)
These equations may be simplified as:
Sm+2+2—iizn-—q-Sm+1+%—22—%Sm=O (S=a,b,c,de) (14)

These approximate equations indicate that the coefficients a,,, b,,, ¢\, d,,, and e,,, are
predominantly dependent on the former terms expressed in terms of a, by, ¢, di, and
e, (k =0, 1), respectively, when m is large enough.

Assuming the convergence ratio of U, V, W, B, and B, to be p,, ps, p., ps and p,,
respectively, i.e.

Ps = ,31_1.1}0 S;+l (S = d, ba ¢, d’ e)’ (15)

and noting the elementary character of the alternate series, eqn (14) can be changed into
the following form:
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2sina sin? o
pg‘ = ps+ 3 Ps (S=a,b,c,de), (16)
R, R;
which yields the following identical real root:
ps=Sl;a (S = a,b,c,d,e). 17)

0

Therefore, the solutions for U, V, W, B, and B, in eqns (11) have identical convergence
radii. That is, as long as x is within the circle of the convergence radius, convergence of
these five series will be assured. For the shells considered here, noting that the maximum
value of x is L/2 and R, is the average radius, for our purposes the condition for convergence
can be finally rewritten as:

R, =20 (18)
Hence the five constructed series will converge to their corresponding solutions if the small
radius of the cone is not zero, i.c., if the conical shell is a truncated one. A complete cone
may be treated as a truncated cone with a very small radius at its apex. Thus for all practical
purposes, there are no limitations on the geometric parameters of the shell considered.
Accordingly, the solutions obtained provide exact solutions for the five displacements U,
V, W, B, and B, for the free vibrations of cones, and these five displacements may be used
to calculate the stress resultants N,, N, and N,,, the bending moments M,, M, and M,,
and the transverse shear forces Q, and Q, through eqns (2) and (5). This solution is exact
because it satisfies the governing equations rigorously and it also satisfies the 10 boundary
conditions through 10 arbitrary constants.

The free vibration frequencies and the related vibration modes can finally be obtained
by equating the determinants of the coefficients matrix obtained after imposition of the 10
boundary conditions to zero.

4. ILLUSTRATIVE EXAMPLE

In this section, the foregoing theory is illustrated through numerical investigation of
axisymmetric vibration of isotropic and laminated cones. The transverse shear deformation
effect on the axisymmetric frequency parameters of the cones with various semivertex angles
o, the slant lengths L and material properties is highlighted through comparing with those
predicted by the classical shell theory (see Tong, 1993). In all calculations, 30 terms in all
series were used. Before presenting the results, let us introduce the following notations :

_ [P _ [P
Wy = A“w,-Rz Wy = A“a),Rz.

Where o, and w,. are referred to as the frequency and its parameter of the cone
computed using the classical shell theory (see Tong, 1993), w; and w,; are those calculated
using the improved shell theory.

There are four types of boundary conditions used in the present study, and they are
listed in Table 1.

19)

Table 1. Boundary conditions

Type Improved shell theory including Classical shell theory neglecting
number transverse shear deformation transverse shear deformation

1 U=W=§,=V =M, =0at both ends U=W=W,=V=0atboth ends

2 N,=W=M,=V=M,, =0atsmall end N, =W=M,=V =0atsmall end
U=W=§,=V=M,=0at large end U=W=W,=V=0at large end

3 U=W=§,=V=M,=0at small end U=W=W, =V =0at small end

N.=W=M,=V=M,=0atlarge end N,=W=M,=V =0 at large end

4 N,=W=M,=V= M, =0atboth ends N,= W= M_=V = (0 at both ends
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Fig. 1. w,,/w, vs h/R, for isotropic cones with boundary condition of type | (L sin a/R, = 0.25).

The first example is analysis of axisymmetric vibration of isotropic cones with u = 0.3.
The ratio w,/w, is plotted vs h/R, in Figs 1-4 for cones with different «, Lsina/R, and
various types of boundary conditions ; namely, Figs 1 and 2 with boundary condition type
1, Fig. 3 with type 2 and Fig. 4 with type 3. It can be seen that w,./w,, increases as /R,
becomes large, namely, for thick shells, the results given by improved theory are smaller
than those predicted by classical theory, while for thin shells both theories give almost the
same results. For example, w,; is 1% larger than w,. for A/R, = 0.01, and 50% larger than
w, for h/R, = 0.09 for cones with & = 60°, L sin /R, = 0.25 and boundary condition type
1 (see Fig. 2). It is worth noting that cones with boundary condition type 1 tend to yield a
larger percentage of reduction in the frequency parameter than those with type 2 and 3.
Another phenomena worth noting is that the slant length of the cone decreases the ratio
w,./w, when all other parameters and conditions remain unchanged, namely, long shell
tends to lessen the transverse shear deformation effect in terms of reducing the frequency
parameters computed using the classical shell theory.

L T 1 L T
150 .
140 Lsna/R, 3
L —0— 025 J
[ &~ 05
- -O— 0.75
= 1.30 \-— —-
8 F ]
s
£ [ ]
8 y20[ N
110
1.008

IR,

Fig. 2. w,;/w,. vs k/R, for isotropic cones with boundary condition of type 1 (« = 60°).
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Fig. 3. w,/w,. vs h/R, for isotropic cones with boundary condition of type 2 (L sin /R, = 0.25).

The second illustrative example considers the axisymmetric vibration of antisymmetric
cross-plied laminated cones with material parameters of each layer given as:

E, .
=X =150 Hsp = 0.25 Gis

E, E, = 0.5

_ B o B
2(1 +”xz) ¢ 2(1 +“¢z)

Ux: = ﬂdaz = 0-3 ze = (20)

Thus the coefficients in eqns (5) are:

LI e 2 e

1.078

m”/m,a

1.050

T rr oy

1.025 -

1.000 ronuir IS N S S P—" " M
0.010 0.020 0.030 0.040 0.050

h/R,
Fig. 4. w,,/w,. vs h/ R, for isotropic cones with boundary condition of type 3 (L sin a/R, = 0.25).
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Fig. 5. w,./w,; vs h/R, for laminated cones with boundary condition of type 1 (L/R, = 0.25).

Ay = Ay =301 +02)h A2 =Qph Agss = Qesh
1
By = -322=4—]§(Q11”“Q22)h2 By = Bss =0

Dy =Dy = 4(Q11+02)A° Dy =108 Dge = 13066h°
A= %Quh Ass = %sth’ (21)

where # denotes the total thickness of the cone, and

Ex tuxeﬁEc# E¢
Q = L S k. S =%
" 1 _”xqi.u:px Q 12 - ﬂxq&”q&x Q22 I "’uxd:ﬂcﬁx

Q44 = G¢z st = ze QGG = Gx¢- (22)

It is worth pointing out that the extension—bending coupling terms attain their
maximum value with two plies and become zero with an infinite number of plies. In this
study, two cases are considered, namely, with coupling and without coupling. For the
case of with coupling, we have B,, = — B,, = (Q,,—0Q,,)h*/8, while for the other case,
B, = B,, = 0. When the total thickness of the shell is increased to study the transverse
shear deformation effect, we assume that increase of the total thickness is realized through
increasing the thickness of each layer of the two plies for the case of with coupling, and
through increasing the total number of plies for the other case.

All calculations in the second example show that the extension—-bending coupling
decreases the frequency parameter w,, for axisymmetric vibration of the composite cones.
This phenomenon is the same as that observed when using classical shell theory (see Tong,
1993). To show the effect of the transverse shear deformation, the ratio w,./w, is plotted
vs h/R, in Fig. 5 for axisymmetric vibration of antisymmetric cross-plied laminated cones
with L/R, = 0.5, different « and boundary condition of type 1. In this figure, the dashed
and solid curves represent the results with and without coupling, respectively. It is observed
that the dashed curves remain below the solid curves, and w,./w,; increases as o becomes
large. When #/R, = 0.01, w,./w, is almost equal to unity, which means that results from
both theories are identical ; when #/R; = 0.1, w,./w,; is larger than 1.0, which shows that
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Table 2. Frequency parameters w, for cones with 883 (x = 30°, L/R, = 0.5)

Without coupling With coupling
h/ R 2 wpi wpt 6‘)pc/ wpl wpi wpc wpc/ wpi

0.01 0.1959  0.1978 1.010  0.1768  0.1769 1.000
0.02 0.2318  0.2355 1.016 0.2091  0.2119 1.013
0.03 0.2608  0.2671 1.024 0.2304  0.2360 1.024
0.04 0.2884  0.2992 1.037 02495  0.2578 1.033
0.05 0.3137  0.3308 1.054  0.2681 0.2794 1.042
0.06 0.3358  0.3606 1.074 0.2862  0.3010 1.052
0.07 0.3547  0.3877 1.093 0.3033  0.3222 1.062
0.08 03704 04117 1111 0.3193  0.3426 1.073
0.09 0.3835  0.4325 1.128 0.3338  0.3620 1.084
0.10 03943  0.4504 1.142 03469  0.3801 1.096

Table 3. Frequency parameters w, for cones with 883 (¢ = 45°, L/R, = 0.5)

Without coupling With coupling
h/ R 2 wpi wpz wpc/ wpi wpi wpc wpc / wpl

0.01 0.2535  0.2556 1.008 0.2270  0.2321 1.022
0.02 0.3041  0.3084 1.014 02692 0.2797 1.039
0.03 0.3504  0.3590 1.025 03000 0.3164 1.055
0.04 0.3965  0.4131 1.042 03302 0.3529 1.069
0.05 0.4396  0.4679 1.062 03610  0.3905 1.082
0.06 0.4779  0.5207 1.089  0.3914  0.4290 1.096
0.07 0.5109  0.5695 1.115 04205 0.4673 L111
0.08 0.5388  0.6129 1.137  0.4478  0.5046 1.127
0.09 0.5620  0.6505 1157 04728  0.5403 1.143
0.10 0.5813  0.6823 1.174 04955 0.5738 1.158

Table 4. Frequency parameters w, for cones with 883 (x = 60°, L/R, = 0.5)

Without coupling With coupling
h/ R 2 wpi wpc wpc / Cl)p,- wpi wpc wpc/ a)pl

0.01 0.2508  0.2522 1.005 0.2231  0.2328 1.043
0.02 03125  0.3162 1.012 0.2670  0.2856 1.070
0.03 0.3789  0.3889 1.026 0.3082  0.3354 1.088
0.04 0.4465  0.4687 1.050  0.3528  0.3891 1.103
0.05 0.5103  0.5511 1.080 0.3988  0.4462 1.119
0.06 0.5679  0.6325 1.114 0.4443  0.5053 1.137
0.07 0.6183  0.7102 1.149 0.4878  0.5650 1.158
0.08 0.6616  0.7815 1.181 0.5284  0.6244 1.182
0.09 0.6983  0.8444 1.209  0.5658  0.6825 1.206
0.10 0.7291  0.8973 1.231 0.5999  0.7383 1.231

the transverse shear deformation included in the improved shell theory has the effect of
reducing the results predicted by the classical shell theory.

Tables 24 give the frequency parameters w,., w, and w,/w, for axisymmetric
vibration of antisymmetric cross-plied laminated cones with the boundary condition of type
4, L/R, = 0.5 and different a, namely, Table 2 for a = 30°, Table 3 for « = 45° and Table
4 for a = 60°. In these Tables, it is noted that the results of the improved theory are lower
than those of the classical theory, and the extension—bending coupling effects are the same
for both theories in the sense of reducing the frequency parameters of the cones.

5. CONCLUSIONS

The salient points in this study include : (1) a systematic solution procedure is developed
for free vibration analysis of laminated conical shells including the transverse shear defor-
mation effect by using the power series method ; (2) the solutions are applicable to all types
of boundary conditions and to various kinds of isotropic, orthotropic and composite
laminated conical shells ; (3) by way of verification, the frequency parameters are computed
for axisymmetric vibrations of cones with different geometric and material parameters and
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under various types of boundary conditions. Illustrative results show that : (a) the transverse
shear deformation reduces the frequency parameters predicted by the classical theory ; (b)
the extension—bending coupling decreases the frequency parameters computed using either
the improved or the classical theory.
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APPENDIX
The coefficients in eqns (12) are given by:

Fiy =536 1—K,Gq1,  Fira=K3G13—K3G2  Fiy =53G1 0,

Fira=x3G4 Fis =x3Gy 5— kG4, Fie=K3Gis—K1G 40
Fia=K3G1—1,Gs, Frz =x3G1 3~ 5G4 Fro= —k3Gys,
Fiio=55G5-%3Gs,  Fry =53G110—%2Ges,  Firia = —K:G 10
Fii3= —KGany, Fiia =536, 11— %G00, Frys = %3Gy, 12—%:G 013

Fyi = 243G, — 4,6y, Fyy = 23Gy3—4:Gs., Fy3 = 43G53— 212Gy 3,
Foa=A43G4— 4G54, Fis = A3Ga3— 4G5, Fig = ;G2

Fy7 = 23Ga7—4:G s, Fiy= —4,Gs1. Fyp = 3Gy 5—22Gs 4,
Fri0 = 43G9~ 4Gy, Fu= A3Ga10—42Gs 10, Foyy = A43Gyy,y —4,Gg s
Fpny = A3G512—22Gs,12, Frna= —A3Gs513

Fy, =Gy lAss (i=1,2,3,...,12)

For= —1,Gry+%,Gyy, Foa= —1.G13+K:1Gaz, Fuy = —K3G15,

Foo= —%,G16 Fos = —KGy5+5,Gy 3, Fio= —Kk2G16+%,Gyas
Fo7= —K3G,3+K:Gys, Foy= ~Kk3G13+%:Goss Foo=%,Gy2
Foro= —K3G194+%,Gas,  Fanr = —K2Gr10+%:1Gus  Foi2 =%Gyi0s
Foin=x1Gen1s Fora= =x3G 11 +%1Ganz Fars = —K261,12+K1Ga s
Fsy = —4,Gy1+ 4Gy, Fyp = ~2,G53+4,Gs,, Fs3 = —1,G,3+4,Gs,3,
Fsy=~2G4+4,Gsy  Fss= —1;G15+2,Gss, Fso= —2:02,

Fsy = —2;G33+ 4G5 Fs3 = 4Gy, Fsg = —23G13+4:Gsy,
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Fsjo= —A2G5+41Gs9,  Fspy = —2Gy10+41Gs 100 Fss2 = —4,G00+4Gs 1y,
Fsi3=—4Gr13+41Gs12, Fs1a= 4G5

where

ko =AuDy—BY Ky =A,/ke Ky = Byjx K3 = Dy /i,
Ao = Aaausa—Bga Ay = Ass/lo Ay = By3fhe Ay = Dsa/lo,

and the coefficients G, ; are:

G = _An@n+1D)sina G.. = _Aym—4y)sin’ a—4yn’  pho?
b R(m+2 % RXm+2)(m+1) m+2)(m+1)°
2pho® sin « pho? sin? a
Gia=— 575 G4 = — oy,
’ R, (m+2)(m+1) Rim+2)(m+1)
G o= — Ayzan G = (—Apum+Ay)nsina
b3 R,(m+2)’ ' Rim+2)(m+1)
Gro= _A;zcosa G =(~Algm+A22)sinacosa
MU T Rm+)” M RIm+2)(m+1)  °
.. _ Bu@mtDsing _ (Buym’—By)sin® a—Byyn’
1 R,(m+2) * "~ RXm+2)(m+1) ’
G = — Byysn Gois e (—Byym-+Byy3)nsina
MET T Rm+2) M RYm+2m+1)
G - A123n G - (A|23m+A223)n sin o
MU R,m+2 P RYm+2)(m+1)
Gonm A ;Cm+Dsina o = Az (m* —1)sin® a—A4,,n* — Ay cos’ a _ phor®
BT T Rmy2 M RXm+2(m+1) m+2)m+1)
Go. = 2pho? sin « G = phw? sin a
BT URmAYmAD T T R m+)(m+1)’
Gon = (A + Az ncosa Gon = Biaan
T RIm+2)(m+1)" T R(m+2)’
Grom (B|23m+8223)n sin a _ ~B33(2m+1)sina
BT R m+dm+n) T M R(m+2)
Gore = By3(m? — 1) sin® a—Byn? + 4R, cos a G — Agsinacosa
ae Rim+2)(m+1) »OURR T T RAm+2)(m+1)’
Gui = Ay cosa G _{(dm+4y)sinecosa
MTRMmA2 T RIm+d(m+1)
Go = (A22+A44)n COs & _ _A55(2m+1)3ina
BERImA)m+1) " R,(m+2)
G Asgsm? sin® a— A n’— Ay, costa pho®
2 R¥m+2(m+1) m+2)m+1)’
2pho)® sina phw? sin? ¢
Gy = — o——p—, G31=“‘""2"""—’_":
" R,(m+2)(m+1) ' RXm+2)(m+1)
Goo = B, cosa—Ag R, Guom — AssR,(2m+ D sina—(Bym+ By, ) sin o cos o,
WEUORm) T TP R (m+2)(m+1) ’
Gure = — Assmsin’ g P (By, cos a— AR )n
10 Rim+2)m+1)° "7 T RIm4+2)m+1)
Gurw = Agnsina
M2 T RAm42)(m+ 1)’
Ge: = _B,,(2m+l)sina Gasm — (B“mz‘—Bzz)Sinz a—B;;nz
o R(m+2) "4 Rim+D(m+1)
Gur= — Bn;n Gou = (“B;23m+3223)n sin o
b R(m+2)" 7% Rim+2D(m+1)
G = By, cosa—As R, Goo = — {(B);m—Byy) cos —2A4 55 R m] sin a
e R,(m+2) 4 Rim+2)(m+1) ’
G _ Ass(m—1}sin’ a, Gur = _D,@m+hsing
YT REm+D(m+D” AT R,(m+2)



456 L. TonG
Goee — (D ym*— D) sint g—Dyn -4, R2 B phw?
i RXm+2)(m+1) 12(m+2)(m+1)°
3,42 3.2
Z(Ass-ph‘;o )sina (Ass—phlzw )sin’oc
Gato =R et * T = T RIma DT D
Giom - Dyyn Gooe = (—D,;sm+Dyy3)nsina,
a2 R,(m+2)° ~*° RIm+2D(m+1)
G. - Biyn _ (Biaym+Byys)nsing
SUTRm+2) T Rim+2m+1)
G = B,;(2m+1Dsina Gere — B, (m*~1)sin® a—B,n* + AR, cos a
BTTORm+ T Ri(m+2)(m-+1)
G.. = Ayqsinacos G = (Ba2;cos a— AR )n
ST T RYm+2)m+ )’ P REm+m+1)
Gne — Agnsine Gev = Dyan
ST T RMm+ Dm+1)’ T R(m+2)
G..= (D,23m+0223)n sin « G _ __D33(2m+1)sincz
ST TR m)(m+1) 0T R,(m+2 °
G = Dys(m* = )sin’ a—Dyon® — 44 R7 ph’w?
s = Ri(m+2(m+1) 12(m+2)(m+1)°
3,.2 3.2
Z(A“— phléo )sin o (A“— ehT;O—)sinz o
Gn="Rernm+D PO T Rmi oD
where

Ay = A+ A5
By = By2+Bys
D23 = D2+ Ds;

Azzs = Az +4s;
Byyy = By + 8B,

D3ys = Dy + D33
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